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Double perturbation theory for the generator coordinate 
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D e n s t  Teoretische en Wiskundige Natuurkunde, University of Antwerp (RUCA), 
Antwerp, Belgium 
$Department of Quantum Chemistry, University of Uppsala, Uppsala, Sweden 

Received 5 April 1977 

Abstract. A double perturbation theory for generator coordinate integral equations is 
developed. For the treatment of collective oscillations the well known harmonic approxima- 
tion turns out to be a suitable unperturbed problem. A test calculation is performed on 
Lipkin’s exactly solvable many body system. 

1. Introduction 

The generator coordinate method (Griffin and Wheeler 1957, Lathouwers 1975), as 
suggested by Griffin, Hill and Wheeler (GHW), is a microscopic theory of collective 
motion in many particle systems. Trial functions for the variational principle are written 
as superpositions of continuously labelled basis states 

The intrinsic states @ ( x  1.) depend upon the particle coordinates x and contain a set of 
parameters or ‘generator coordinates’. The variationally optimal weight functions f ( a )  
must satisfy the GHW integral equation 

This equation does not belong to the classical types studied by Fredholm, Hilbert and 
Schmidt since it contains two Hermitian kernels 

Few equations of the type (1.2) are solvable. An interesting case in which an exact 
solution is possible occurs for the so called harmonic kernels 
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The resulting spectrum is that of an harmonic oscillator; the corresponding eigenfunc- 
tions are also known 

E, =E(O)- iA + ( n  +;)a, f),= ( A 2 - B 2 ) ” 2 ,  
(1.5) 

where k = 2s [ (A  + B ) / ( A  -B)]1’2 and H, are Hermite polynomials. This provides a 
good starting point for the description of collective oscillations. For a chosen intrinsic 
function containing parameters related to the vibrational properties of the system, one 
can fit the exact kernels to the harmonic ones, thus obtaining a collective excitation 
frequency 0. This procedure is commonly referred to as the harmonic approximation 

In order to include anharmonic effects one has to go beyond the HA. Several 
suggestions in this direction have been made. The most straightforward way is to 
discretise the GHW equation and reduce it to a matrix eigenvalue problem. There are 
however several drawbacks such as meshpoint dependence of the results, slow con- 
vergence of the eigenvalues and the rapid occurrence of approximate linear dependen- 
ces due to strong non-orthogonality of the basis functions. Another method, which is a 
direct extension of the HA, is to expand the kernels to higher orders. The difficulty with 
this technique is that, whereas the HA is equivalent to a second-order differential 
equation, including higher powers gives rise to higher-order differential equations. 
These must then again be solved in an approximate way. In the following we propose to 
treat anharmonic effects by a generalised perturbation theory (PT) built on the HA as an 
unperturbed problem. An application and comparison with other methods is made for 
Lipkin’s model. 

(HA). 

2. Perturbation theory for generalised eigenvalue problems 

We will consider, in general, the diagonalisation of a Hamiltonian in a non-orthogonal 
basis which leads to eigenvalue problems of the type 

( H - E A ) f =  0. (2.1) 
These can be matrix equations of finite or infinite order or integral equations as in the 
GCM. For bound states (2.1) is supplemented with the boundary condition 

(flAlf) < +CO (2.2) 
where the bracket denotes a double summation or integration over the basis state 
labels. Generalised eigenvalue problems of the type (2.1)+(2.2) also occur in other 
areas of theoretical physics and applied mathematics, e.g. matrix equations in statistics 
and differential equations arising from boundary perturbations in membrane theory. 
Perturbation theory for these problems has been considered by Kat0 (1966), however, 
under the restriction that (2.1) can be reduced to the classical form, i.e. only for overlap 
operators A which are invertible or whose negative square root exists. Here we present 
a straightforward generalisation of Rayleigh-Schrodinger PT both for perturbations in 
the dynamics ( H )  and the geometry (A) of the eigenvalue problem. We will emphasise 
the importance of inhomogeneous equations for the eigenfunction corrections and the 
connection between PT and the variational principle. 
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2.1. Single and double perturbation series 

Assume that (2.1) can be solved in the form 

(Ho - EoAo)P = 0 ,  (2.3) 

where Ho and A. are unperturbed operators differing from H and A by the perturba- 
tions V and W 

V = H - H o ,  W =  A - A o .  (2.4) 
The unperturbed (2.3) and perturbed (2.1) eigenvalue problems can be linked by 
introducing a coupling constant A as 

H(A ) = Ho + A V, A ( A ) = A o + A  W. (2.5) 

Rayleigh-Schrodinger PT then consists in studying the solutions of the A dependent 
eigenvalue problem 

The classical 
constant 

(H(A ) - JW )A@ ))f (A 1 = 0. (2.6) 
approach is to expand E(A) and f(A) in power series of the coupling 

E ( A )  = E O + A E '  + A ~ E *  +. . 
E(A)=p+Af1+A2f2+.  . . . 

In order for (2.7) to be meaningful it will be assumed that these series have a 
convergence radius of at least unity or can be summed in some other way (Pad6 
approximants, Bore1 summations,. . . ). Substitution of the series in (2.1) and identifi- 
cation of A powers leads to a set of inhomogeneous equations for the eigenfunction 
corrections 

n 

(Ho-EoAo)f" = k = l  1 (EkAo+Ek-'  W)fn-k - Vf"-'. (2.8) 

Introducing the normalisation conventions 

which implies that (PIAolf") = 0, one can determine the energy corrections by taking the 
scalar product to the left of (2.8) with p. The result reads 

which for n = 1 gives 

E' = (PI VIP) -EO(PI w-9. 

(2.10) 

(2.11) 

Folklore tells us that the first-order correction equals the average of the perturbation 
with respect to the unperturbed state. Formula (2.11) confirms this statement for 
generalised eignevalue problems the perturbation being V - E o  W. In the general 
expression (2.10) the first term, being of pure dynamical nature, is a classical one, for 
k = 1 we have a geometrical contribution while for k f 1 the terms are of mixed 
character. One can study the interplay between dynamics and geometry in more detail 
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by a double PT. This consists in introducing different coupling constants p and v, for V 
and W respectively, and assuming double power series 

E (  p, v) = Eo +E1"p +Eo"v +E2*'p2 +E"lpv + Eo"v2 + . . . 
(2.12) 

f (p ,  v)=p+f'.op+p.1v+f2,0p2+f1~1pv+P.2v2+. . . . 

( H ~ - E O A ~ ) ~ ~ ~ ~  = C C ( ~ k J ~ ~ + ~ k , r - l  w ) f m - k . n - '  + C ~ k J J ~ ~ f m - k , n  - Vfm-lvn 

Substitution in (2.1) leads to the inhomogeneous equations 
m n  m 

k = O  I = 1  k = l  

(2.13) 

which, under the normalisation condition (2.9), give the energy corrections 

E m . "  = (PI . I f"-1.")-  f f Ek,'-1(pl W l f m - k . n - 1  ). (2.14) 

Such a general term is of order m in V and n in W. The connection between the single 
and double PT series is easily established if one arranges the E"'" in the following way: 

k = O  I = 1  

(2.15) 

Clearly the corrections arising from the single parameter case are obtained by summing 
the columns of equation (2.15). Notice, however, that the E"'" do not equal the 
individual contributions to (2.10). The classification, according to dynamics and 
geometry, introduced by double PT has definite advantages in cases where V and Ware 
of different magnitude. Indeed if,  e.g., W >> V the Em30will decrease much more rapidly 
than the EO'". It will then be sufficient to sum over only part of the above tableau as 
indicated on figure 1. 

3. Solution of inhomogeneous equations 

Solving inhomogeneous equations arising from generalised eigenvalue problems is not 
more difficult than in the classical case. Indeed there exists no such thing as a generalised 
inhomogeneous equation. Hence, no modification of existing techniques (expansion 
methods, Green functions,. . .) is necessary. For GHW integral equations this means 
that although the original equation is not of a common type the inhomogeneous 
equations are classical Fredholm equations of the first kind. The usual way to obtain 
workable expressions for energy corrections is to expand the eigenfunction corrections 
in the unperturbed eigenstates. With the normalisation convention (2.9) one obtains 
directly 
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Figure 1. Effective part of the energy corrections E"'" which have to be summed in the case 
W >> V. M ( N )  denotes the number of terms after which the pure dynamical (geometrical) 
parts have converged. 

where g7 and gr"' are the right-hand sides of (2.8) and (2.13). Explicit formulae for the 
second-order corrections are then easily derived from (2.14) 

(3.2) 

(3.4) 

where 

The derivation of higher-order terms presents no difficulties. The drawback of expan- 
sion techniques is the fact that the complete unperturbed spectrum and the correspond- 
ing eigenstates have to be known. In many cases this is not feasible. Additional 
problems can arise due to incompleteness of the basis sets, divergence of the series 
(3.1)-(3.4) and possible instability of the solutions due to inaccurate data for the 
inhomogeneous terms. There is therefore a definite' need for more direct methods. 
Techniques for both differential and integral equations have been developed. For 
details we refer to Hirschfelder eta1 (1964) and Delves and Walsh (1974)respectively. 

4. Extension of Wiper's theorem 

As early as 1930 Hylleraas (1930) showed that the third-order energy correction in 
classical Rayleigh-Schrodinger FT can be expressed in terms of the first-order 
wavefunction correction only. Wigner (1935) extended this result and proved that the 
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Nth-order eigenfunction correction determines the energy up to and including order 
2 N +  1. Explicit formulae were derived by Dalgarno and Stewart (1956) and Dupont- 
Bourdelet et a1 (1960). The basis of Wigner’s theorem, is the fact that the energy is a 
stationary quadratic functional. This is also true for generalised eigenvalue problems 
since 

(flHlf) E = E ( f )  = - 
( f l A l f )  

If one now partitions the exact solution into a trial function and a corresponding error 
term 

f = f t r ia l+ Eferror (4.2) 

E = Etrial + 0 ( e 2 ) .  (4.3) 

one has 

Setting ftrial equal to the perturbation series up to and including the Nth-order term 
gives 

Eferror = A n f ”  = A ~ + l ( f ~ + 1 +  A ~ N + z + .  . .> (4.4) 
n = N + l  

or E = AN+’.  The energy is thus determined up to and including order 2 N +  1 such that 
Wigner’s theorem remains valid. The explicit formula can be derived, making repeated 
use of the inhomogeneous equations, by raising (lowering) the indices on the left- 
(right-) hand side functions in the scalar products contained in the energy corrections 
(2.10). The calculation is straightforward but rather tedious. Introducing the proper 
summations the result reads 

n - l  2 n - k - 1  n - 1  2 n - k  

k = l  I = n - k  k = O  I = n - k  
E’” = ( f ” - ’ l \ f i f ” ) -  E r ( f k l A o l f 2 n - k - 1 ) -  C C E’-’(fkl  Wlf2n-k-‘)  (4.5) 

Z n - k + l  

). 
- ‘f 1 ~ / - 1 ( f k l w l f 2 n + l - k - /  

k = O  I = n - k + l  

The formulae in the double parameter case can be derived in a similar way. They 
involve fourfold summations and will not be given here. The expressions (4.5) and (4.6) 
represent an important shortcut since they reduce the number of inhomogeneous 
equations to be solved by a factor of two. 

5. Application to Lipkin’s model 

This model has been designed by Lipkin et a1 (1965) to test various types of random 
phase approximations and perturbation theories as applied to the many particle 
problem. 

It consists of N particles distributed over two N-fold degenerate levels. These 
levels are distinguished by a label c = *l, and the degenerate states by a label p 
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(p = 1, . . . , N ) .  The Hamiltonian of the system is 

where E is the separation between the two levels and S is the strength of the interaction. 
Introducing the quasi-spin operators 

J,  = $z u a h , ,  
pa 

the Hamiltonian is expressed as 

H = EJ, + t s (~ ’ ,  + ~ 2 ) .  (5.3) 

The operators J,, J-  and J,  satisfy the commutation relations of angular momentum. 
The Hamiltonian commutes with total quasi-spin J2 .  For a given number of particles 
the energy matrix breaks up into submatrices, corresponding to different angular 
momentum values, the largest one of which has J = N / 2  and includes the ground state 
and the collective excited states of interest to this paper. For a full study of the 
symmetry properties of (5.1) we refer to Lipkin et a1 (1965). 

The Hartree-Fock (HF) treatment of Lipkin’s model has been studied extensively by 
Agassi (1966). For small interaction strengths the HF spectrum is equidistant and given 
by  NE/^, - ( N -  1 ) ~ / 2 ,  - ( N - 2 ) ~ / 2 , .  . . while the HF ground state I H F )  has all the 
particles in the lower level. The exact spectrum shows anharmonicities which become 
more important as the interaction strength increases. The system exhibits collective 
oscillations in which anharmonicities are caused by correlation effects. 

Following da Providencia er a1 (1971) we define the intrinsic states as 

la) = eXp(ffJz))(HF). (5.4) 
The GC space then includes the states contained in the above mentioned multiplet with 
J =  N / 2 .  The GCM, as considered here, is therefore exact and thus provides a good 
testing ground for approximation schemes. The kernels, for normalised intrinsic states 
(5.4), can easily be calculated 

The minimum of the energy E ( a )  = H(a,  a )  occurs for a = 0 if x = ( N -  ~ ) S / E  < 1. This 
defines the region of small interaction strengths to which we shall restrict ourselves. 
Expanding the kernels in Taylor series around a = 0 one obtains the following 
expressions for the quantities appearing in the harmonic kernels (1.4): 

s = N  E(O)= E H F =  -$NE 

A = €  B = - E X .  
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These data are sufficient to apply the perturbation theory. The expansion formula can 
be used since the complete unperturbed spectrum and its eigenfunctions are known 
(1.5). The necessary matrix elements can be evaluated analytically (see Brandas and 
Laskowski 1975) or by a two-dimensional numerical integration. In the following 
tables 1-4 we have listed some results for the four lowest states. Thewalues obtained by 
da Providencia via expansion of the kernels to fourth order are also given (anharmonic 
approximation) for the ground and first excited state. A dash in the PT results indicates 
that no numerical convergence was obtained. Both in the anharmonic model and in PT 
the results are better for a large particle number and worse for larger interaction 
strengths. The first phenomenon is due to the fact that the Gaussian overlap approxi- 

Table 1. Results for the four lowest states using different methods. N = 8. 

Harmonic Anharmonic 1st order 2nd order Exact 

tion tion 
approxima- approxima- PT PT 

NSIr = 0.4 
Eo 4.032 4.037 4.035 4.035 4.035 
El 3.095 3.085 3.078 3.078 3.078 
E2 2.158 - 2.087 2.078 2.075 
E3 1.221 - 1.108 - 1,044 
NS/r  = 0.6 
Eo 4.074 4,082 4.080 4.081 4.081 
El 3.223 3.167 3.173 3,174 3,174 
E2 2.372 - 2.185 - 2.162 
E3 1,521 - 1 . ~ 2 6  - 1.093 
NSIE = 0.8 
Eo 4.143 4.139 4.145 4,146 4.146 
Ei 3.429 3.258 3.289 - 3.305 
E2 2.715 - 2.275 - 2.254 
E3 2.001 - 1.337 - 1,126 

Table 2. Results for the four lowest states using different methods. N = 14. 

Harmonic Anharmonic 1st order 2nd order Exact 

tion tion 
approxima- approxima- PT PT 

7'036 
6,107 
5,179 
4,250 

7.085 
6.254 
5,424 
4.594 

7.165 
6.496 
5.826 
5.157 

7.038 
6.098 

7.088 
6,214 
- 

7,159 
6.363 

7.038 
6.096 
5.128 
4.152 

7,088 
6.218 
5.280 
4.325 

7.162 
6.376 
5.438 
4.481 

7.038 
6,096 
5.124 
4.131 

7,088 
6.219 
5.275 
4.289 

7,164 
6.403 
5,515 
4.571 

7.038 
6.096 
5.123 
4.126 

7,088 
6.219 
5.273 
4.274 

7,163 
6.393 
5.475 
4.467 
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Table 3. Results for the four lowest states using different methods. N = 30. 

Harmonic Anharmonic 1st order 2nd order Exact, 

tion tion 
approxima- approxima- PT PT 

N S / E  = 0.4 
EO 15.039 15.040 15.040 15.040 15.040 
El 14.117 14.111 14.111 14.111 14.111 
E2 13.195 - 13.166 13.165 13.165 
E3 12.272 - 12.211 12.205 12.204 
NS/E = 0.6 
Eo 15.092 15.094 15.094 15.094 15.094 
E I  14.278 14.256 14,257 14.258 14.258 
E2 13'463 - 13.378 13.378 13.378 
E3 12.649 - 12.472 12.463 12.461 
N S / E  = 0.8 
EO 15.183 15.178 15.179 15.179 15.179 
El 14.549 14.468 14,469 14.484 14.480 
E2 13'915 - 13.649 13.701 13.684 
E3 13.281 - 12.767 12.876 12.819 

Table 4. Results for the four lowest states using different methods. N = 50. 

Harmonic Anharmonic 1st order 2nd order Exact 

tion tion 
approxima- approxima- PT PT 

NS/E = 0.4 
Eo 
El 
E2 
E3 

EO 
El 

E2 
E3 

NSIE = 0.8 
EO 
El 
E2 
E3 

NS/E = 0.6 

25.040 
24.120 
23.200 
22.280 

25.096 
24.287 
23,478 
22.669 

25,189 
24.569 
23.948 
23.327 

25.041 
14.117 

25.096 
24.272 
- 

25,186 
24.5 14 
- 

25.041 
24.116 
23.182 
22.240 

25.096 
24.273 
23.422 
22.548 

25.186 
24.5 14 
23,762 
22,953 

25.041 
24.1 16 
23.182 
22.237 

25.096 
24.273 
23.422 
22.545 

25.187 
24.522 
23.795 
23.025 

25.041 
24.116 
23.182 
22.237 

25.096 
24.273 
23.422 
22.545 

25.186 
24.520 
23.785 
22.996 

mation is better for large N .  On the other hand for stronger interactions the anhar- 
monicities in the spectrum increase such that the HA provides a less attractive starting 
point. 

Comparing the quality of the results one can conclude that the anharmonic model 
gives results which are as good or slightly worse than first-order PT. Second-order PT is 
in all cases superior to the anharmonic model and removes anharmonicities which are as 
large as 30% of the average level spacing. 

From the economical point of view PT is certainly preferable to higher-order boson 
expansions. The energy including first-order corrections can be written as 

(5.7) 
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which necessitates the calculation of two two-dimensional integrals for each level. In 
the anharmonic model, giving comparable results, one first has to expand the kernels up 
to fourth order which, for realistic cases, can be rather laborious. In addition one has to 
solve a fourth-order differential eigenvalue problem, certainly a non-trivial task. Going 
to higher orders does not present any difficulty in PT since it merely amounts to 
calculating the double integrals ( f i lHI f i )  and (f i lhl f i ) .  In the anharmonic model 
however higher-order terms lead to higher-order differential equations such that the 
method becomes more and more difficult to apply. In addition it is clear that the process 
cannot be continued to infinity. 

It is interesting to compare our results with those of PT starting out from the 
independent particle model. The main body FT in which S is the coupling constant has 
been carried out by Lipkin et a1 (1965). Their second- and fourth-order energies are 
comparable with our first- and second-order results. Thus by constructing a collective 
unperturbed problem via the CCM we have gained a factor of two in the order of the PT. 

The fact that first-order PT already gives quite accurate results and that the 
second-order correction is almost negligible in many cases does not mean that the 
perturbations involved are small. This becomes clear if one calculates the corrections as 
given by double PT. In a typical case N = 30, NS/E = 0.6 one finds the values given in 
table 5 .  The individual terms E"" are thus quite large but if summed vertically in 
equation (2.15) they become almost negligible. We are thus in a case where both V and 
Ware  of the same strength. This is due to the fact that the overlap kernel appears as a 
multiplicative factor in the Hamiltonian kernel such that the effect of the Gaussian 
overlap is present in both the geometrical and dynamical perturbations. 

Finally we want to discuss the limitation of our treatment. From (5.6) we see that as 
x approaches uni ty  B goes to -A. The collective excitation frequency will vanish for 
x = 1. It is well known that the HA simply breaks down at this point. Indeed for B = -A 
it is clear that higher-order powers become important. Beyond x = 1 the energy has a 
maximum for cy = 0 and a minimum at fa0 with cy: = 0: - lI/k + 1). One can still 
perform the HA around +ao or -ao, however, parity is then violated and the results are 
far less accurate (da Providhcia et a1 1971). For these large interaction strengths 
o( > 1) the exact spectrum is no longer quasi-harmonic but consists of a number of 
parity doublets. I t  is therefore impractical (even unwise) to try to apply the HA in this 
region. 

Table 5. Corrections given by double PT for a typical case N = 30, N S / E  = 0.6. 

E 2  E 2 . 0  E l . l  Eo.2 

Eo -0.144 0.289 0.145 -4.8 x io-' 
El -0.551 1.120 -0.569 -4.9 x 1 0 - ~  
E2 -1.222 2.512 -1.291 9.5 x lo-' 

- 8.3 x 1 0 - ~  E3 - - 

6. Discussion 

We have developed PT for generalised eigenvalue problems up to a level common to PT 

for classical eigenvalue problems in most textbooks on quantum mechanics. The 
extension of Wigner's theorem allows one to calculate the eigenvalues up to and 
including order 2N + 1 at the expense of solving N inhomogeneous equations for the 
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eigenfunction corrections. Via double PT one can study the interplay between dynami- 
cal and geometrical perturbations. Open problems are the direct solution of 
inhomogeneous equations and the derivation of convergence theorems. 

We have tested the theory as applied to the description of collective vibrations by 
the GCM. The harmonic approximation then provides a suitable unperturbed problem. 
The full unperturbed spectrum and its corresponding eigenfunctions are known such 
that expansion formulae can be applied. A calculation for Lipkin’s model has shown 
that the method is qualitatively and economically superior to da Providcncia’s boson 
expansions. The advantage of a collective unperturbed problem over PT starting out 
from the independent particle model seems to be a factor of two in the order of the FT. 

One of the interesting aspects of the GCM is that several approximation schemes, 
such as the random phase approximation (RPA) (Jancovici and Schiff 1964) or the 
Hermitian operator method (HOM) (Bouten et a1 1973), can be formulated as harmonic 
approximations for special choices of intrinsic states containing several generator 
coordinates. Since there is no problem in extending the above theory to several 
collective modes all these methods are possible candidates for unperturbed problems. 
The GCM thus provides a representation in which errors introduced by say RPA or HOM 
can be removed by PT. Whether the conclusions concerning the quality of our method 
remain valid for realistic systems is to be studied. 
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